4.7 Review

Nanozyme-based pollutant sensing and environmental treatment: Trends, challenges, and perspectives

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 854, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.158771

Keywords

Nanozymes; Environmental pollutant; Sensing; Monitoring; Remediation; Nanotoxicity

Ask authors/readers for more resources

Nanozymes are nanomaterials that have enzyme-like properties and unique physical and chemical characteristics. They have shown great potential in environmental monitoring and remediation of pollutants, including heavy metals and organic compounds. However, their inherent toxicity needs to be evaluated and monitored to ensure their safe use.
Nanozymes are defined as nanomaterials exhibiting enzyme-like properties, and they possess both catalytic functions and nanomaterial's unique physicochemical characteristics. Due to the excellent stability and improved catalytic activ-ity in comparison to natural enzymes, nanozymes have established a wide base for applications in environmental pollutants monitoring and remediation. Nanozymes have been applied in the detection of heavy metal ions, molecules, and organic compounds, both quantitatively and qualitatively. Additionally, within the natural environment, nanozymes can be employed for the degradation of organic and persistent pollutants such as antibiotics, phenols, and textile dyes. Further, the potential sphere of applications for nanozymes traverses from indoor air purification to anti-biofouling agents, and even they show promise in combatting pathogenic bacteria. However, nanozymes may have inherent toxicity, which can restrict their widespread utility. Thus, it is important to evaluate and monitor the interaction and transformation of nanozymes towards biosphere damage when employed within the natural envi-ronment in a cradle-to-grave manner, to assure their utmost safety. In this context, various studies have concluded that the green synthesis of nanozymes can efficiently overcome the toxicity limitations in real life applications, and nanozymes can be well utilized in the sensing and degradation of several toxic pollutants including metal ions, pesti-cides, and chemical warfare agents. In this seminal review, we have explored the great potential of nanozymes, whilst addressing a range of concerns, which have often been overlooked and currently restrict widespread applications and commercialization of nanozymes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available