4.8 Article

Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise

Journal

SCIENCE
Volume 379, Issue 6629, Pages 294-299

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.ade5140

Keywords

-

Ask authors/readers for more resources

By introducing engineered noise to the precise solution of Jones matrix elements, we have surpassed the fundamental limit of polarization multiplexing capacity of metasurfaces. Through experiments, we have achieved up to 11 independent holographic images using a single metasurface illuminated by visible light with different polarizations, which is the highest reported capacity for polarization multiplexing. With the combination of position multiplexing, the metasurface is capable of generating 36 distinct images, forming a holographic keyboard pattern. This discovery opens up new possibilities for high-capacity optical display, information encryption, and data storage.
Noise is usually undesired yet inevitable in science and engineering. However, by introducing the engineered noise to the precise solution of Jones matrix elements, we break the fundamental limit of polarization multiplexing capacity of metasurfaces that roots from the dimension constraints of the Jones matrix. We experimentally demonstrate up to 11 independent holographic images using a single metasurface illuminated by visible light with different polarizations. To the best of our knowledge, it is the highest capacity reported for polarization multiplexing. Combining the position multiplexing scheme, the metasurface can generate 36 distinct images, forming a holographic keyboard pattern. This discovery implies a new paradigm for high-capacity optical display, information encryption, and data storage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available