4.7 Review

Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications

Journal

REVIEWS OF GEOPHYSICS
Volume 61, Issue 1, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022RG000777

Keywords

-

Ask authors/readers for more resources

Land surface temperature (LST) is a crucial parameter that reflects land-atmosphere interaction. This review summarizes the progress in LST estimation algorithms and provides an comprehensive collection of widely used LST products. It also addresses the problems related to current LST products and introduces effective methods to overcome these challenges. The development of spatiotemporal seamless LST data significantly promotes the application of LST products in various fields.
Land surface temperature (LST) is a crucial parameter that reflects land-atmosphere interaction and has thus attracted wide interest from geoscientists. Owing to the rapid development of Earth observation technologies, remotely sensed LST is playing an increasingly essential role in various fields. This review aims to summarize the progress in LST estimation algorithms and accelerate its further applications. Thus, we briefly review the most-used thermal infrared (TIR) LST estimation algorithms. More importantly, this review provides a comprehensive collection of the widely used TIR-based LST products and offers important insights into the uncertainties in these products with respect to different land cover conditions via a systematic intercomparison analysis of several representative products. In addition to the discussion on product accuracy, we address problems related to the spatial discontinuity, spatiotemporal incomparability, and short time span of current LST products by introducing the most effective methods. With the aim of overcoming these challenges in available LST products, much progress has been made in developing spatiotemporal seamless LST data, which significantly promotes the successful applications of these products in the field of surface evapotranspiration and soil moisture estimation, agriculture drought monitoring, thermal environment monitoring, thermal anomaly monitoring, and climate change. Overall, this review encompasses the most recent advances in TIR-based LST and the state-of-the-art of applications of LST products at various spatial and temporal scales, identifies critical further research needs and directions to advance and optimize retrieval methods, and promotes the application of LST to improve the understanding of surface thermal dynamics and exchanges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available