4.5 Article

Mononuclear Cells Negatively Regulate Endothelial Ca2+ Signaling

Journal

REPRODUCTIVE SCIENCES
Volume 30, Issue 7, Pages 2292-2301

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s43032-023-01164-5

Keywords

Endothelial cells; Calcium signaling; Mononuclear cells; Pregnancy

Ask authors/readers for more resources

Endothelial Ca2+ signaling plays a crucial role in maintaining vasodilation during pregnancy. Inflammatory cytokines inhibit ATP-stimulated Ca2+ signaling and nitric oxide production. However, the impact of immune cell engagement on endothelial Ca2+ signaling remains unclear.
Endothelial Ca2+ signaling has important roles to play in maintaining pregnancy associated vasodilation in the utero-placenta. Inflammatory cytokines, often elevated in vascular complications of pregnancy, negatively regulate ATP-stimulated endothelial Ca2+ signaling and associated nitric oxide production. However, the role of direct engagement of immune cells on endothelial Ca2+ signaling and therefore endothelial function is unclear. To model immune-endothelial interactions, herein, we evaluate the effects of peripheral blood mononuclear cells (PBMCs) in short-term interaction with human umbilical vein endothelial cells (HUVECs) on agonist-stimulated Ca2+ signaling in HUVECs. We find that mononuclear cells (10:1 and 25:1 mononuclear: HUVEC) cause decreased ATP-stimulated Ca2+ signaling; worsened by activated mononuclear cells possibly due to increased cytokine secretion. Additionally, monocytes, natural killers, and T-cells cause decrease in ATP-stimulated Ca2+ signaling using THP-1 (monocyte), NKL (natural killer cells), and Jurkat (T-cell) cell lines, respectively. PBMCs with Golgi-restricted protein transport prior to interaction with endothelial cells display rescue in Ca2+ signaling, strongly suggesting that secreted proteins from PBMCs mediate changes in HUVEC Ca2+ signaling. We propose that endothelial cells from normal pregnancy interacting with PBMCs may model preeclamptic endothelial-immune interaction and resultant endothelial dysfunction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available