4.6 Article

Dynamics of the Water Molecules at the Intrinsic Liquid Surface As Seen from Molecular Dynamics Simulation and Identification of Truly Interfacial Molecules Analysis

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 120, Issue 16, Pages 8578-8588

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.5b10370

Keywords

-

Funding

  1. Hungarian OTKA Foundation [104234, 119732]

Ask authors/readers for more resources

Dynamic properties at the liquid-vapor interface of water are investigated at 298 K on the basis of molecular dynamics simulations and intrinsic surface analysis. The mean surface residence time and diffusion coefficient of the molecules as well as H-bond lifetimes are calculated at the liquid surface and compared to the bulk values. It is found that surface molecules have a non-negligible diffusion component along the surface normal, although this component is limited in time to 7-15 ps, a value comparable with the mean surface residence time. It is also seen that interfacial molecules move considerably faster, and their H-bonds live shorter, than in the bulk liquid phase. This finding is explained by the relation between the number of H-bonded neighbors and mobility, namely that molecules being tethered by more H-bonds move slower, and their H-bonds live longer than in the case of molecules of less extensive H-bonding. Finally, it is found that molecules residing long at the surface are clustering around each other, forming more and longer living H-bonds within the surface layer, but much less outside this layer than other interfacial molecules, indicating that longer surface residence is related to weaker interaction with the subsurface region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available