4.8 Article

Cohesin controls X chromosome structure remodeling and X-reactivation during mouse iPSC-reprogramming

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2213810120

Keywords

cellular reprogramming; X chromosome; X-reactivation; cohesin; X-inactivation

Ask authors/readers for more resources

Reactivation of the inactive X chromosome is a key event during reprogramming, and the cohesin complex member SMC1a plays a crucial role in this process. Depletion of SMC1a affects X chromosome reactivation without interfering with iPSC-reprogramming, and it is necessary for the decompacted state of the active X chromosome. Our findings highlight the importance of cohesin in the remodeling of the X chromosome and its critical role in iPSC-reprogramming.
Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available