4.7 Article

Ultra-low loss polyphenylene oxide-based composites with negative thermal expansion fillers

Journal

POLYMER COMPOSITES
Volume 44, Issue 3, Pages 1849-1858

Publisher

WILEY
DOI: 10.1002/pc.27209

Keywords

composites; dielectric properties; polyphenylene oxide; thermal expansion

Ask authors/readers for more resources

This study successfully reduced the coefficient of thermal expansion (CTE) and improved the dielectric properties of polymer composites by incorporating Zr2WP2O12 (ZWP) particles. The performance of the PPO/ZWP composites was superior to that of traditional PPO/silica composites. Therefore, PPO/ZWP composites may be promising materials for high-frequency applications in electronic packaging fields.
The mismatch of coefficient of thermal expansion (CTE) of components has created numerous reliability issues in electronic packages. Incorporating inor-ganic fillers into polymer matrices has been proven to be an effective way to reduce the CTE, but properly balancing CTE with other key properties of the composites is still a challenge. In the current work, negative thermal expan-sion Zr2WP2O12 (ZWP) particles were prepared by a high-temperature solid-phase synthesis method. Polyphenylene oxide (PPO)-based composites with different volume fractions (0, 10, 20, 30 vol%) of ZWP particles were prepared and their thermal expansion and dielectric properties were characterized. PPO/silica composites with the same volume fractions of silica were also pre-pared and characterized for comparison. With the content of filler increased from 0 to 30 vol%, the CTE of the PPO/ZWP composites reduced from 74.2 to 45.4 ppm/degrees C, which is more significant than that of the PPO/silica composites (48.0 ppm/degrees C with 30 vol% silica). Meanwhile, the dielectric loss of PPO/ZWP composites decreased significantly from 0.0024 (0 vol% ZWP) to 0.0018 (30 vol % ZWP) at 10 GHz, which is better than PPO/silica composites (0.0019 with 30 vol% Silica). The PPO/ZWP composites exhibit excellent comprehensive properties, which may be promising materials for high-frequency applications in electronic packaging fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available