4.6 Article

Oxygen Reduction Reaction Mechanisms on Al-Doped X-Graphene (X = N, P, and S) Catalysts in Acidic Medium: A Comparative DFT Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 120, Issue 46, Pages 26435-26441

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b09674

Keywords

-

Funding

  1. Korea Center for Artificial Photosynthesis (KCAP) - Ministry of Science, ICT, and Future Planning through the National Research Foundation (NRF) Korea [2009-0093880, 2009-0093886]
  2. Basic Science Research Program - Ministry of Science, ICT, and Future Planning through the National Research Foundation (NRF) Korea [2012-017247]
  3. BK Plus Program - Ministry of Science, ICT, and Future Planning through the National Research Foundation (NRF) Korea
  4. A3 Foresight Program - Ministry of Science, ICT, and Future Planning through the National Research Foundation (NRF) Korea

Ask authors/readers for more resources

Density functional theory (DFT) is applied to study the oxygen reduction reaction (ORR) mechanisms on Al-doped X-graphene (X = N, P, and S) electrocatalyst in acidic medium in a fuel cell cathode comparatively. In order to study the catalytic properties of Al-doped X-graphene (X = N, P, and S), we calculate the adsorption properties of the ORR intermediates O-2, O, OOH, OH, H2O, and H2O2. We also examine 2e and 4e pathways during the ORR process in terms of adsorption energy of each ORR step. Our calculated results reveal that each Al-doped X-graphene (X = N, P, and 5) catalyst follows a 4e transfer pathway with favorable (exothermic) reaction energies. We observe that both Al-doped N-graphene and Al-doped P-graphene are energetically more favorable than Al-doped S-graphene catalysts for enhanced and stable ORR via 4e pathways in an acidic environment. Such analysis is quite useful in choosing the appropriate catalyst in applications of a polymer electrolyte fuel cell cathode.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available