4.6 Article

A novel open-source raspberry Pi-based behavioral testing in zebrafish

Journal

PLOS ONE
Volume 17, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0279550

Keywords

-

Ask authors/readers for more resources

This study presents a low-cost and automatic zebrafish behavior assay apparatus for evaluating the neurobehavioral performance of zebrafish. It utilizes a custom-written behavior analysis algorithm, data processing on a Raspberry Pi, and implements Kalman filter algorithm and ROI region to increase accuracy. The setup was also used to analyze zebrafish behavioral changes under different alcohol concentrations, demonstrating its reliability and accuracy.
The zebrafish (Danio rerio) is widely used as a promising high-throughput model organism in neurobehavioral research. The mobility of zebrafish can be dissected into multiple behavior endpoints to assess its neurobehavioral performance. However, such facilities on the market are expensive and clumsy to be used in laboratories. Here, we designed a low-cost, automatic zebrafish behavior assay apparatus, barely without unintentional human operational errors. The data acquisition part, composed of Raspberry Pi and HQ Camera, automatically performs video recording and data storage. Then, the data processing process is also on the Raspberry Pi. Water droplets and inner wall reflection of multi-well cell culture plates (used for placing zebrafish) will affect the accuracy of object recognition. And during the rapid movement of zebrafish, the probability of zebrafish tracking loss increased significantly. Thus, ROI region and related thresholds were set, and the Kalman filter algorithm was performed to estimate the best position of zebrafish in each frame. In addition, all functions of this device are realized by the custom-written behavior analysis algorithm, which makes the optimization of the setup more efficient. Furthermore, this setup was also used to analyze the behavioral changes of zebrafish under different concentrations of alcohol exposure to verify the reliability and accuracy. The alcohol exposure induced an inverted U-shape dose-dependent behavior change in zebrafish, which was consistent with previous studies, showcasing that the data obtained from the setup proposed in this study are accurate and reliable. Finally, the setup was comprehensively assessed by evaluating the accuracy of zebrafish detection (precision, recall, F-score), and predicting alcohol concentration by XGBoost. In conclusion, this study provides a simple, and low-cost package for the determination of multiple behavioral parameters of zebrafish with high accuracy, which could be easily adapted for various other fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available