4.6 Article

Risk stratification with explainable machine learning for 30-day procedure-related mortality and 30-day unplanned readmission in patients with peripheral arterial disease

Journal

PLOS ONE
Volume 17, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0277507

Keywords

-

Ask authors/readers for more resources

Predicting the risk of procedure-related mortality and unplanned readmission in patients undergoing lower extremity endovascular interventions for peripheral artery disease (PAD) can improve patient outcomes. This study developed machine learning models to stratify the risk of 30-day mortality and readmission, and found that the models performed equally well across different demographic groups.
Predicting 30-day procedure-related mortality risk and 30-day unplanned readmission in patients undergoing lower extremity endovascular interventions for peripheral artery disease (PAD) may assist in improving patient outcomes. Risk prediction of 30-day mortality can help clinicians identify treatment plans to reduce the risk of death, and prediction of 30-day unplanned readmission may improve outcomes by identifying patients who may benefit from readmission prevention strategies. The goal of this study is to develop machine learning models to stratify risk of 30-day procedure-related mortality and 30-day unplanned readmission in patients undergoing lower extremity infra-inguinal endovascular interventions. We used a cohort of 14,444 cases from the American College of Surgeons National Surgical Quality Improvement Program database. For each outcome, we developed and evaluated multiple machine learning models, including Support Vector Machines, Multilayer Perceptrons, and Gradient Boosting Machines, and selected a random forest as the best-performing model for both outcomes. Our 30-day procedure-related mortality model achieved an AUC of 0.75 (95% CI: 0.71-0.79) and our 30-day unplanned readmission model achieved an AUC of 0.68 (95% CI: 0.67-0.71). Stratification of the test set by race (white and non-white), sex (male and female), and age (>= 65 years and <65 years) and subsequent evaluation of demographic parity by AUC shows that both models perform equally well across race, sex, and age groups. We interpret the model globally and locally using Gini impurity and SHapley Additive exPlanations (SHAP). Using the top five predictors for death and mortality, we demonstrate differences in survival for subgroups stratified by these predictors, which underscores the utility of our model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available