4.6 Article

Lost in the woods: Forest vegetation, and not topography, most affects the connectivity of mesh radio networks for public safety

Journal

PLOS ONE
Volume 17, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0278645

Keywords

-

Funding

  1. Idaho Forest Utilization Research (FUR) program
  2. U.S. Centers for Disease Control and Prevention (CDC) National Institute for Occupational Safety and Health (NIOSH) at the University of Idaho [5 U01 OH010841]

Ask authors/readers for more resources

This study evaluates the connectivity of mesh networking devices and predicts connectivity using lidar and satellite remote sensing data. The results show that vegetation-related metrics have a greater impact on connectivity. The study suggests that remote sensing data can be used to forecast the connectivity of real-time mesh networks, which is important for wildland firefighting, forestry, and public safety applications.
Real-time data- and location-sharing using mesh networking radios paired with smartphones may improve situational awareness and safety in remote environments lacking communications infrastructure. Despite being increasingly used for wildland fire and public safety applications, there has been little formal evaluation of the network connectivity of these devices. The objectives of this study were to 1) characterize the connectivity of mesh networks in variable forest and topographic conditions; 2) evaluate the abilities of lidar and satellite remote sensing data to predict connectivity; and 3) assess the relative importance of the predictive metrics. A large field experiment was conducted to test the connectivity of a network of one mobile and five stationary goTenna Pro mesh radios on 24 Public Land Survey System sections approximately 260 ha in area in northern Idaho. Dirichlet regression was used to predict connectivity using 1) both lidar- and satellite-derived metrics (LIDSAT); 2) lidar-derived metrics only (LID); and 3) satellite-derived metrics only (SAT). On average the full network was connected only 32.6% of the time (range: 0% to 90.5%) and the mobile goTenna was disconnected from all other devices 18.2% of the time (range: 0% to 44.5%). RMSE for the six connectivity levels ranged from 0.101 to 0.314 for the LIDSAT model, from 0.103 to 0.310 for the LID model, and from 0.121 to 0.313 for the SAT model. Vegetation-related metrics affected connectivity more than topography. Developed models may be used to predict the connectivity of real-time mesh networks over large spatial extents using remote sensing data in order to forecast how well similar networks are expected to perform for wildland firefighting, forestry, and public safety applications. However, safety professionals should be aware of the impacts of vegetation on connectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available