4.6 Article

Lack of the Ig cell adhesion molecule BT-IgSF (IgSF11) induced behavioral changes in the open maze, water maze and resident intruder test

Journal

PLOS ONE
Volume 18, Issue 1, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0280133

Keywords

-

Ask authors/readers for more resources

The study found that mice lacking BT-IgSF displayed altered behaviors, including reduced anxiety or increased fear of darkness, decreased behavioral flexibility, and increased aggression. These results demonstrate the importance of BT-IgSF in regulating specific behaviors and its contribution to network functions.
The brain- and testis-specific Ig superfamily protein (BT-IgSF, also termed IgSF11) is a homotypic cell adhesion protein. In the nervous system, BT-IgSF regulates the stability of AMPA receptors in the membrane of cultured hippocampal neurons, modulates the connectivity of chandelier cells and controls gap junction-mediated astrocyte-astrocyte communication. Here, we performed behavioral tests in BT-IgSF-deficient mice. BT-IgSF-deficient mice were similar to control littermates with respect to their reflexes, motor coordination and gating, and associative learning. However, BT-IgSF-deficient mice displayed an increased tendency to stay in the central illuminated areas in the open field and O-Maze paradigms suggesting reduced anxiety or increased scotophobia (fear of darkness). Although BT-IgSF-deficient mice initially found the platform in the water maze their behavior was compromised when the platform was moved, indicating reduced behavioral flexibility. This deficit was overcome by longer training to improve their spatial memory. Furthermore, male BT-IgSF-deficient mice displayed increased aggression towards an intruder. Our results show that specific behaviors are modified by the lack of BT-IgSF and demonstrate a contribution of BT-IgSF to network functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available