4.7 Article

Salicylic acid interacts with other plant growth regulators and signal molecules in response to stressful environments in plants

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 196, Issue -, Pages 431-443

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2023.02.006

Keywords

Salicylic acid; Stress tolerance; Plant hormones; Biosynthesis; Metabolism; Signal molecules

Categories

Ask authors/readers for more resources

Salicylic acid (SA) is a potential plant growth regulator (PGR) that regulates plant growth and development by triggering physiological and metabolic processes. It plays a crucial role in plant defense mechanisms against environmental stimuli. However, it is not fully understood how different concentrations of SA affect plant growth under stressful conditions and its interactions with other PGRs and signaling molecules within the plant body. This review discusses the crosstalk between SA and other key PGRs and signaling components in plants exposed to environmental cues, as well as the role of exogenously applied SA in regulating growth and enhancing the oxidative defense system under abiotic stresses.
Salicylic acid (SA) is one of the potential plant growth regulators (PGRs) that regulate plant growth and development by triggering many physiological and metabolic processes. It is also known to be a crucial component of plant defense mechanisms against environmental stimuli. In stressed plants, it is documented that it can effectively modulate a myriad of metabolic processes including strengthening of oxidative defense system by directly or indirectly limiting the buildup of reactive nitrogen and oxygen radicals. Although it is well recognized that it performs a crucial role in plant tolerance to various stresses, it is not fully elucidated that whether low or high concentrations of this PGR is effective to achieve optimal growth of plants under stressful environments. It is also not fully understood that to what extent and in what manner it cross-talks with other potential growth regulators and signalling molecules within the plant body. Thus, this critical review discusses how far SA mediates crosstalk with other key PGRs and molecular components of signalling pathways mecha-nisms, particularly in plants exposed to environmental cues. Moreover, the function of SA exogenously applied in regulation of growth and development as well as reinforcement of oxidative defense system of plants under abiotic stresses is explicitly elucidated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available