4.8 Article

Producing fast and active Rubisco in tobacco to enhance photosynthesis

Journal

PLANT CELL
Volume 35, Issue 2, Pages 795-807

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/plcell/koac348

Keywords

-

Ask authors/readers for more resources

Researchers have successfully replaced plant Rubisco with a faster Rubisco in tobacco chloroplasts, resulting in a higher carboxylation rate and similar growth rate of transgenic plants compared to the wild-type under 1% CO2 concentration. This study represents a step towards engineering a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) performs most of the carbon fixation on Earth. However, plant Rubisco is an intrinsically inefficient enzyme given its low carboxylation rate, representing a major limitation to photosynthesis. Replacing endogenous plant Rubisco with a faster Rubisco is anticipated to enhance crop photosynthesis and productivity. However, the requirement of chaperones for Rubisco expression and assembly has obstructed the efficient production of functional foreign Rubisco in chloroplasts. Here, we report the engineering of a Form 1A Rubisco from the proteobacterium Halothiobacillus neapolitanus in Escherichia coli and tobacco (Nicotiana tabacum) chloroplasts without any cognate chaperones. The native tobacco gene encoding Rubisco large subunit was genetically replaced with H. neapolitanus Rubisco (HnRubisco) large and small subunit genes. We show that HnRubisco subunits can form functional L8S8 hexadecamers in tobacco chloroplasts at high efficiency, accounting for similar to 40% of the wild-type tobacco Rubisco content. The chloroplast-expressed HnRubisco displayed a similar to 2-fold greater carboxylation rate and supported a similar autotrophic growth rate of transgenic plants to that of wild-type in air supplemented with 1% CO2. This study represents a step toward the engineering of a fast and highly active Rubisco in chloroplasts to improve crop photosynthesis and growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available