4.7 Article

Plant genetic relatedness and volatile-mediated signalling between Solanum tuberosum plants in response to herbivory by Spodoptera exigua

Journal

PHYTOCHEMISTRY
Volume 206, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2022.113561

Keywords

Solanum tuberosum; Solanaceae Spodoptera exigua; Noctuidae; Plant -herbivore interactions; Plant -plant communication; Volatile organic compounds

Ask authors/readers for more resources

This study tested whether airborne signalling in response to herbivory between potato plants is contingent on plant genetic relatedness, and investigated genotypic variation in VOCs potentially underlying signalling and its contingency on relatedness. The results showed that herbivory drove changes in VOC composition but not total emissions, and there was quantitative and qualitative variation in constitutive and induced VOC emissions among varieties. The signalling effect was not contingent on plant genetic relatedness despite genotypic variation in induced VOCs.
It has been proposed that plant-plant signalling via herbivore-induced volatile organic compounds (VOCs) should be stronger between closely related than unrelated plants. However, empirical tests remain limited and few studies have provided detailed assessments of induced changes in VOCs emissions across plant genotypes to explain genetic relatedness effects. In this study, we tested whether airborne signalling in response to herbivory between Solanum tuberosum (potato) plants was contingent on plant genetic relatedness, and further investigated genotypic variation in VOCs potentially underlying signalling and its contingency on relatedness. We carried out a greenhouse experiment using 15 S. tuberosum varieties placing pairs of plants in plastic cages, i.e. an emitter and a receiver, where both plants were of the same genotype or different genotype thereby testing for self -recognition, an elemental form genetic relatedness effects. Then, for half of the cages within each level of relatedness the emitter plant was damaged by Spodoptera exigua larvae whereas for the other half the emitter was not damaged. Three days later, we placed S. exigua larvae on receivers to test for emitter VOC effects on leaf consumption and larval weight gain (i.e. induced resistance). In addition, we used a second group of plants subjected to the same induction treatment with the same S. tuberosum varieties to test for herbivore-induced changes in VOC emissions and variation in VOC emissions among these plant genotypes. We found that her-bivory drove changes in VOC composition but not total emissions, and also observed quantitative and qualitative variation in constitutive and induced VOC emissions among varieties. Results from the bioassay showed that the amount of leaf area consumed and larval weight gain on receiver plants exposed to damaged emitters were significantly lower compared to mean values on receivers exposed to control emitters. However, and despite genotypic variation in induced VOCs, this signalling effect was not contingent on plant genetic relatedness. These findings provide evidence of VOCs-mediated signalling between S. tuberosum plants in response to S. exigua damage, but no evidence of self-recognition effects in signalling contingent on variation in VOC emissions among S. tuberosum varieties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available