4.4 Article

Impact of hohlraum cooling on ignition metrics for inertial fusion implosions

Journal

PHYSICS OF PLASMAS
Volume 30, Issue 1, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0113138

Keywords

-

Ask authors/readers for more resources

This study extends the evaluation of ignition metrics to consider the effect of hohlraum cooling before peak implosion velocity in radiation-driven implosions. Firstly, the authors present an extension of the results for key hot spot stagnation quantities from a previous study, showing that modified analytic expressions match the experimental results for implosions with and without hohlraum cooling. Secondly, the authors compare the radiation hydrodynamics simulations with an analytic piston model to investigate the sensitivity of hohlraum cooling time and shell radius at peak velocity. Thirdly, they provide a set of ignition metrics that are applicable to a wide range of capsule designs with or without hohlraum cooling before peak implosion velocity.
This paper extends the evaluation of ignition metrics to include the impact of hohlraum cooling before peak implosion velocity in radiation driven implosions. First, we provide an extension of the results for the key hot spot stagnation quantities from the 2018 paper [Lindl et al., Phys Plasmas 25, 122704 (2018)]. The modified analytic expressions presented here match the Hydra results for these National Ignition Facility scale implosions both with and without hohlraum cooling before peak velocity if the effective ablation pressure P-abl(effective) = P-abl(t(pv) -0.5 ns) is used in the analytic formulas, where t(pv) is the time of peak implosion velocity. Second, we provide an analysis that enables a comparison of the Hydra radiation hydrodynamics code calculations utilized here with the predictions of the analytic piston model [Hurricane et al., Phys. Plasmas 29, 012703 (2022)] of an ICF implosion, which focused on sensitivity to time duration of the hohlraum cooling phase before peak velocity (often called the coast time) and the shell radius at peak velocity R-pv. Third, we provide a set of ignition metrics that are valid across a wide range of capsule designs valid for implosions both with and without hohlraum cooling before peak implosion velocity is reached.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available