4.7 Article

Comparing different nonlinear dimensionality reduction techniques for data-driven unsteady fluid flow modeling

Journal

PHYSICS OF FLUIDS
Volume 34, Issue 11, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0127284

Keywords

-

Ask authors/readers for more resources

Computational fluid dynamics (CFD) produces high-dimensional data, and recent advances in machine learning (ML) have introduced various techniques for extracting physical information from it. This study investigates four manifold learning and two deep learning methods for nonlinear dimensionality reduction (NDR), and compares them to principal component analysis (PCA). The results suggest that using NDR methods can help build more efficient reduced-order models of fluid flows.
Computational fluid dynamics (CFD) is known for producing high-dimensional spatiotemporal data. Recent advances in machine learning (ML) have introduced a myriad of techniques for extracting physical information from CFD. Identifying an optimal set of coordinates for representing the data in a low-dimensional embedding is a crucial first step toward data-driven reduced-order modeling and other ML tasks. This is usually done via principal component analysis (PCA), which gives an optimal linear approximation. However, fluid flows are often complex and have nonlinear structures, which cannot be discovered or efficiently represented by PCA. Several unsupervised ML algorithms have been developed in other branches of science for nonlinear dimensionality reduction (NDR), but have not been extensively used for fluid flows. Here, four manifold learning and two deep learning (autoencoder)-based NDR methods are investigated and compared to PCA. These are tested on two canonical fluid flow problems (laminar and turbulent) and two biomedical flows in brain aneurysms. The data reconstruction capabilities of these methods are compared, and the challenges are discussed. The temporal vs spatial arrangement of data and its influence on NDR mode extraction is investigated. Finally, the modes are qualitatively compared. The results suggest that using NDR methods would be beneficial for building more efficient reduced-order models of fluid flows. All NDR techniques resulted in smaller reconstruction errors for spatial reduction. Temporal reduction was a harder task; nevertheless, it resulted in physically interpretable modes. Our work is one of the first comprehensive comparisons of various NDR methods in unsteady flows. Published under an exclusive license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available