4.7 Article

Characteristics of advection-diffusion-Langmuir adsorption processes in two-dimensional plane Poiseuille flows

Journal

PHYSICS OF FLUIDS
Volume 35, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0133789

Keywords

-

Ask authors/readers for more resources

In this study, the advection-diffusion-reaction equations were solved for two-dimensional plane Poiseuille flows. The dynamics of the system and the influences of nondimensional parameters were analyzed. Analytical models were proposed to describe the effects of specific parameters on the adsorption equilibrium time. The research provides a convenient method for identifying dominant processes in future studies of advection-diffusion-Langmuir adsorption systems.
The advection-diffusion-Langmuir adsorption processes of a liquid solution, colloid, or suspension occur in many biomedical and chemical engineering fields. The dynamics of the system can be described by the so-called advection-diffusion-reaction (ADR) equations and are greatly influenced by five nondimensional numbers. Up to now, cases over a wider range of parameters have not been thoroughly studied, and the quantitative dependence of the system dynamics on the parameters remains unclear. In this study, we systematically solve the ADR equations in two-dimensional plane Poiseuille flows for cases with selected values of parameters by the finite difference method. We identify two different regimes in terms of the distribution of the maximum adsorption flux and discuss the dominant mechanism of mass transfer and the influences of the nondimensional parameters in each regime. We then propose analytical models to describe the influences of specific parameters on the adsorption equilibrium time. The results of this research may provide a convenient method to identify the dominant processes in the advection-diffusion-Langmuir adsorption system in future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available