4.8 Article

Cavity Optomechanics with Anderson-Localized Optical Modes

Journal

PHYSICAL REVIEW LETTERS
Volume 130, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.130.043802

Keywords

-

Ask authors/readers for more resources

Confining photons in cavities enhances the interaction between light and matter. We have demonstrated how sidewall roughness in air-slot photonic-crystal waveguides can induce Anderson-localized modes with high quality factors and mode volumes below the diffraction limit. The interaction between these disorder-induced optical modes and in-plane mechanical modes is governed by a distribution of coupling rates, leading to mechanical amplification via optomechanical backaction. This study opens up new possibilities for exploring complex systems with mutually coupled degrees of freedom.
Confining photons in cavities enhances the interaction between light and matter. In cavity optome-chanics, this enables a wealth of phenomena ranging from optomechanically induced transparency to macroscopic objects cooled to their motional ground state. Previous work in cavity optomechanics employed devices where ubiquitous structural disorder played no role beyond perturbing resonance frequencies and quality factors. More generally, the interplay between disorder, which must be described by statistical physics, and optomechanical effects has thus far been unexplored. Here, we demonstrate how sidewall roughness in air-slot photonic-crystal waveguides can induce sufficiently strong backscattering of slot-guided light to create Anderson-localized modes with quality factors as high as half a million and mode volumes estimated to be below the diffraction limit. We observe how the interaction between these disorder-induced optical modes and in-plane mechanical modes of the slotted membrane is governed by a distribution of coupling rates, which can exceed go/2 pi similar to 200 kHz, leading to mechanical amplification up to self sustained oscillations via optomechanical backaction. Our Letter constitutes the first steps towards understanding optomechanics in the multiple-scattering regime and opens new perspectives for exploring complex systems with a multitude of mutually coupled degrees of freedom.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available