4.6 Article

Chemical and Radiation Stability of Ionic Liquids: A Computational Screening Study

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 120, Issue 49, Pages 27757-27767

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.6b08138

Keywords

-

Funding

  1. National Academies Keck Futures Initiative
  2. Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences

Ask authors/readers for more resources

Using a variety of density functional theory (DFT) methods, we present a systematic computational screening effort to analyze the chemical and radiation stability for a large number of anions and cations that constitute room-temperature ionic liquids (RTILs). We compute various electronic properties such as the HOMO-LUMO gap, the ionization potential, and the electron affinities for a large library of ions (42 cations and 42 anions). The theoretical analysis provides the most comprehensive characterization of the chemical and radiation stability of individual ions in RTILs to date. Our calculations reveal that cation stability is closely related to constituent alkyl chain length and branching, whereas the anion stability is mostly dictated by ion size and electronegativity. Furthermore, these calculations show that the omega B97XD functional is the most internally consistent for predicting the chemical and radiation stability. These calculations establish a chemical stability database and a theoretical procedure for further experimental and computational studies of RTILs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available