4.6 Article

Fluorescence decay enhancement and FRET inhibition in self-assembled hybrid gold CdSe/CdS/CdZnS colloidal nanocrystal supraparticles

Journal

OPTICS EXPRESS
Volume 31, Issue 3, Pages 4454-4464

Publisher

Optica Publishing Group
DOI: 10.1364/OE.476441

Keywords

-

Categories

Ask authors/readers for more resources

We report the synthesis of hybrid light emitting particles with a diameter ranging from 100 to 500 nm, consisting of a compact CdSe/CdS/CdZnS semiconductor nanocrystal aggregate encapsulated by controlled nanometric size silica and gold layers. The addition of the gold nanoshell enhances the Purcell decay rate, as predicted by numerical simulations. Furthermore, we demonstrate the inhibition of Forster resonance energy transfer contribution.
We report on the synthesis of hybrid light emitting particles with a diameter ranging between 100 and 500 nm, consisting in a compact semiconductor CdSe/CdS/CdZnS nanocrystal aggregate encapsulated by a controlled nanometric size silica and gold layers. We first characterize the Purcell decay rate enhancement corresponding to the addition of the gold nanoshell as a function of the particle size and find a good agreement with the predictions of numerical simulations. Then, we show that the contribution corresponding to Forster resonance energy transfer is inhibited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available