4.5 Article

Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 120, Issue 20, Pages 4558-4567

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.6b02741

Keywords

-

Funding

  1. Department of Defense Army Research Office (ARO) through a MURI grant [W911NF1410403]
  2. University of Chicago MRSEC NSF [DMR-1420709]
  3. Ruth L. Kirschstein National Research Service Award (NIGMS) [F32 GM113415-01]
  4. NIH [R01-GM097348]
  5. National Science Foundation [OCI-0725070, ACI-1238993]
  6. state of Illinois
  7. Direct For Mathematical & Physical Scien
  8. Division Of Chemistry [1662030] Funding Source: National Science Foundation

Ask authors/readers for more resources

Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the stiffness site affects filament mechanical properties. Incorporating a magnesium ion in the polymerization site does not seem to require any large-scale change to an actin subunit's conformation. Binding of a magnesium ion in the stiffness site adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available