4.6 Review

Save your TIRs - more to auxin than meets the eye

Journal

NEW PHYTOLOGIST
Volume 238, Issue 3, Pages 971-976

Publisher

WILEY
DOI: 10.1111/nph.18783

Keywords

acid growth; auxin; gene expression control; nontranscriptional auxin effects; signal transduction

Categories

Ask authors/readers for more resources

Auxin is a crucial regulator in plant growth and development. The traditional canonical auxin-signalling pathway cannot explain all aspects of auxin biology, but recent studies have discovered non-canonical pathways which mediate rapid auxin responses.
Auxin has long been known as an important regulator of plant growth and development. Classical studies in auxin biology have uncovered a 'canonical' transcriptional auxin-signalling pathway involving the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors. TIR1/AFB perception of auxin triggers the degradation of repressors and the derepression of auxin-responsive genes. Nevertheless, the canonical pathway cannot account for all aspects of auxin biology, such as physiological responses that are too rapid for transcriptional regulation. This Tansley insight will explore several 'non-canonical' pathways that have been described in recent years mediating fast auxin responses. We focus on the interplay between a nontranscriptional branch of TIR1/AFB signalling and a TRANSMEMBRANE KINASE1 (TMK1)-mediated pathway in root acid growth. Other developmental aspects involving the TMKs and their association with the controversial AUXIN-BINDING PROTEIN 1 (ABP1) will be discussed. Finally, we provide an updated overview of the ETTIN (ETT)-mediated pathway in contexts outside of gynoecium development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available