4.5 Article

Time-Resolved Photoelectron Spectroscopy of the Hydrated Electron: Comparing Cavity and Noncavity Models to Experiment

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 120, Issue 49, Pages 12604-12614

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.6b07852

Keywords

-

Funding

  1. National Science Foundation [CHE-1565434]
  2. Direct For Mathematical & Physical Scien [1565434] Funding Source: National Science Foundation
  3. Division Of Chemistry [1565434] Funding Source: National Science Foundation

Ask authors/readers for more resources

We use nonadiabatic mixed quantum/classical molecular dynamics to simulate recent time-resolved photoelectron spectroscopy (TRPES) experiments on the hydrated electron, and compare the results for both a cavity and a noncavity simulation model to experiment. We find that cavity-model hydrated electrons show an adiabatic relaxation mechanism, with ground-state cooling that is fast on the time scale of the internal conversion, a feature that is in contrast to the TRPES experiments. A noncavity hydrated electron model, however, displays a nonadiabatic relaxation mechanism, with rapid internal conversion followed by slower ground-state cooling, in good qualitative agreement with experiment. We also show that the experimentally observed early time red shift and loss of anisotropy of the excited-state TRPES peak are consistent with hydrated electron models with homogeneously broadened absorption spectra, but not with those with inhomogeneously broadened absorption spectra. Finally, we find that a decreasing photoionization cross section upon cooling causes the excited state TRPES peak to decay faster than the underlying radiationless relaxation process, so that the experimentally observed 60-75 fs peak decay corresponds to an actual excited-state lifetime of the hydrated electron that is more likely similar to 100 fs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available