4.6 Article

AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua

Journal

NEW PHYTOLOGIST
Volume 237, Issue 6, Pages 2224-2237

Publisher

WILEY
DOI: 10.1111/nph.18702

Keywords

AaMYB108; Artemisia annua; artemisinin biosynthesis; jasmonic acid; light signal; transcription factor

Categories

Ask authors/readers for more resources

In this study, a transcription factor named AaMYB108 was identified as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator, AaGSW1. Additionally, AaMYB108 interacts with AaCOP1 and AaJAZ8, and its function is influenced by these proteins. Through experiments with transgenic plants, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108. Overall, this study reveals the molecular mechanism of JA regulating artemisinin biosynthesis depending on light and provides new insights into the integration of light and phytohormone signaling in plants.
Artemisinin, a sesquiterpene compound synthesized and stored in the glandular trichome of Artemisia annua leaves, has been used to treat malaria. Previous studies have shown that both light and jasmonic acid (JA) can promote the biosynthesis of artemisinin, and the promotion of artemisinin by JA is dependent on light. However, the specific molecular mechanism remains unclear.Here, we report a MYB transcription factor, AaMYB108, identified from transcriptome analysis of light and JA treatment, as a positive regulator of artemisinin biosynthesis in A. annua. AaMYB108 promotes artemisinin biosynthesis by interacting with a previously characterized positive regulator of artemisinin, AaGSW1.Then, we found that AaMYB108 interacted with AaCOP1 and AaJAZ8, respectively. The function of AaMYB108 was influenced by AaCOP1 and AaJAZ8. Through the treatment of AaMYB108 transgenic plants with light and JA, it was found that the promotion of artemisinin by light and JA depends on the presence of AaMYB108.Taken together, our results reveal the molecular mechanism of JA regulating artemisinin biosynthesis depending on light in A. annua. This study provides new insights into the integration of light and phytohormone signaling to regulate terpene biosynthesis in plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available