4.7 Article

Polygenic scores for psychiatric disorders in a diverse postmortem brain tissue cohort

Journal

NEUROPSYCHOPHARMACOLOGY
Volume 48, Issue 5, Pages 764-772

Publisher

SPRINGERNATURE
DOI: 10.1038/s41386-022-01524-w

Keywords

-

Ask authors/readers for more resources

The development of 'omics technologies has brought about a new era in human postmortem tissue research, allowing for detailed measurement of genes, proteins, and spatial parameters. This study focuses on the clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples. The findings highlight the importance of understanding genetic risk and gene expression in psychiatric disorders, and provide valuable resources for future research.
A new era of human postmortem tissue research has emerged thanks to the development of 'omics technologies that measure genes, proteins, and spatial parameters in unprecedented detail. Also newly possible is the ability to construct polygenic scores, individual-level metrics of genetic risk (also known as polygenic risk scores/PRS), based on genome-wide association studies, GWAS. Here, we report on clinical, educational, and brain gene expression correlates of polygenic scores in ancestrally diverse samples from the Human Brain Collection Core (HBCC). Genotypes from 1418 donors were subjected to quality control filters, imputed, and used to construct polygenic scores. Polygenic scores for schizophrenia predicted schizophrenia status in donors of European ancestry (p = 4.7 x 10(-8), 17.2%) and in donors with African ancestry (p = 1.6 x 10(-5), 10.4% of phenotypic variance explained). This pattern of higher variance explained among European ancestry samples was also observed for other psychiatric disorders (depression, bipolar disorder, substance use disorders, anxiety disorders) and for height, body mass index, and years of education. For a subset of 223 samples, gene expression from dorsolateral prefrontal cortex (DLPFC) was available through the CommonMind Consortium. In this subgroup, schizophrenia polygenic scores also predicted an aggregate gene expression score for schizophrenia (European ancestry: p = 0.0032, African ancestry: p = 0.15). Overall, polygenic scores performed as expected in ancestrally diverse samples, given historical biases toward use of European ancestry samples and variable predictive power of polygenic scores across phenotypes. The transcriptomic results reported here suggest that inherited schizophrenia genetic risk influences gene expression, even in adulthood. For future research, these and additional polygenic scores are being made available for analyses, and for selecting samples, using postmortem tissue from the Human Brain Collection Core.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available