4.5 Article

The Mechanism of SNHG8/Microrna-421-3p/Sorting Nexin 8 Axis on Dopaminergic Neurons in Substantia Nigra in a Mouse Model of Parkinson's Disease

Journal

NEUROCHEMICAL RESEARCH
Volume 48, Issue 3, Pages 942-955

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-022-03795-7

Keywords

Parkinson's disease; LncRNA SNHG8; MicroRNA-421-3p; Sorting nexin 8; Neuron; Apoptosis

Ask authors/readers for more resources

The long non-coding RNA SNHG8 plays a vital role in Parkinson's disease by regulating miR-421-3p and SNX8 to alleviate rotenone-induced dopaminergic neuron injury.
Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the aging population. Particularly, long non-coding RNAs (lncRNAs) have been demonstrated to play vital roles in PD, while the role of lncRNA SNHG8 in PD remains to be further explored. C57BL/6 mice were induced by rotenone to establish a PD model in vivo, and then the dopaminergic (DA) neuronal damage and locomotor dysfunction in rotenone-treated mice were evaluated. Murine DA cell line MN9D was treated with rotenone to establish a cellular PD model in vitro. Then, the viability, apoptosis, mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells were assessed. Expression levels of SNHG8, microRNA-421-3p (miR-421-3p), and sorting nexin 8 (SNX8) in the substantia nigra (SN) of PD mice and rotenone-treated MN9D cells were detected. The interaction between SNHG8 and miR-421-3p, and the targeting relationship between SNX8 and miR-421-3p were confirmed. SNHG8 and SNX8 expression levels were decreased while miR-421-3p expression level was increased in the SN of PD mice and rotenone-treated MN9D cells. Upregulated SNHG8 ameliorated dopaminergic neuron damage and locomotor dysfunction in PD mice. Meanwhile, upregulated SNHG8 enhanced viability, diminished apoptosis, and alleviated mitochondrial dysfunction, endoplasmic reticulum stress, and autophagy in rotenone-treated MN9D cells. Mechanistically, SNHG8 bound to miR-421-3p, and miR-421-3p targeted SNX8. Overexpressed SNHG8 downregulates miR-421-3p to alleviate rotenone-induced dopaminergic neuron injury in PD via upregulating SNX8.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available