4.7 Article

Deletion of equilibrative nucleoside transporter 2 disturbs energy metabolism and exacerbates disease progression in an experimental model of Huntington's disease

Journal

NEUROBIOLOGY OF DISEASE
Volume 177, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2023.106004

Keywords

Huntington's disease; Equilibrative nucleoside transporter; Energy deficit; Motor dysfunction

Categories

Ask authors/readers for more resources

This study investigated the impact of ENT2 deletion on Huntington's disease using a mouse model. The results showed that ENT2 deletion worsened motor dysfunction and increased the accumulation of mutant huntingtin in the striatum of R6/2 mice. Furthermore, ENT2 deletion disrupted energy metabolism, leading to decreased ATP levels and increased AMP/ATP ratio, as well as activation of AMPK and impaired mitochondrial respiration.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, characterized by motor dysfunction and abnormal energy metabolism. Equilibrative nucleoside transporter 1 (ENT1) and ENT2 are the major nucleoside transporters in cellular plasma membrane of the brain. Yet, unlike ENT1 whose function has been better investigated in HD, the role of ENT2 in HD remains unclear. The present study aimed to investigate the impacts of ENT2 deletion on HD using a well-characterized mouse model (R6/2). Microarray analysis, quantitative real-time polymerase chain reaction, and immunostaining of ENT2 in postmortem human brain tissues were conducted. R6/2 mice with or without genetic deletion of ENT2 were generated. Motor functions, including rotarod performance and limb-clasping test, were examined at the age of 7 to 12 weeks. Biochemical changes were evaluated by immunofluorescence staining and immunoblotting at the age of 12 to 13 weeks. In regard to energy metabolism, levels of striatal metabolites were determined by liquid chromatography coupled with the fluorescence detector or quadrupole time-of-flight mass spectrometer. Mitochondrial bioenergetics was assessed by the Seahorse assay. The results showed that ENT2 protein was detected in the neurons and astrocytes of human brains and the levels in the postmortem brain tended to be higher in patients with HD. In mice, ENT2 deletion did not alter the phenotype of the non-HD controls. Yet, ENT2 deletion deteriorated motor function and increased the number of aggregated mutant huntingtin in the striatum of R6/2 mice. Notably, disturbed energy metabolism with decreased ATP level and increased AMP/ ATP ratio was observed in R6/2-Ent2-/-mice, compared with R6/2-Ent2+/+ mice, resulting in the activation of AMPK in the late disease stage. Furthermore, ENT2 deletion reduced the NAD+/NADH ratio and impaired mitochondrial respiration in the striatum of R6/2 mice. Taken together, these findings indicate the crucial role of ENT2 in energy homeostasis, in which ENT2 deletion further impairs mitochondrial bioenergetics and deteriorates motor function in R6/2 mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available