4.6 Article

Australian genome-wide association study confirms higher female risk for adult glioma associated with variants in the region of CCDC26

Journal

NEURO-ONCOLOGY
Volume 25, Issue 7, Pages 1355-1365

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/neuonc/noac279

Keywords

CCDC26; glioblastoma; glioma; GWAS; sex differences

Ask authors/readers for more resources

This study conducted a genome-wide association study (GWAS) on glioma in the Australian population and identified multiple genetic risk regions associated with glioma. The study also found a sex difference in the 8q24.21 region. These findings contribute to a better understanding of the etiology of glioma and have implications for prevention, risk prediction, and treatment.
Background Glioma accounts for approximately 80% of malignant adult brain cancer and its most common subtype, glioblastoma, has one of the lowest 5-year cancer survivals. Fifty risk-associated variants within 34 glioma genetic risk regions have been found by genome-wide association studies (GWAS) with a sex difference reported for 8q24.21 region. We conducted an Australian GWAS by glioma subtype and sex. Methods We analyzed genome-wide data from the Australian Genomics and Clinical Outcomes of Glioma (AGOG) consortium for 7 573 692 single nucleotide polymorphisms (SNPs) for 560 glioma cases and 2237 controls of European ancestry. Cases were classified as glioblastoma, non-glioblastoma, astrocytoma or oligodendroglioma. Logistic regression analysis was used to assess the associations of SNPs with glioma risk by subtype and by sex. Results We replicated the previously reported glioma risk associations in the regions of 2q33.3 C2orf80, 2q37.3 D2HGDH, 5p15.33 TERT, 7p11.2 EGFR, 8q24.21 CCDC26, 9p21.3 CDKN2BAS, 11q21 MAML2, 11q23.3 PHLDB1, 15q24.2 ETFA, 16p13.3 RHBDF1, 16p13.3 LMF1, 17p13.1 TP53, 20q13.33 RTEL, and 20q13.33 GMEB2 (P < .05). We also replicated the previously reported sex difference at 8q24.21 CCDC26 (P = .0024) with the association being nominally significant for both sexes (P < .05). Conclusions Our study supports a stronger female risk association for the region 8q24.21 CCDC26 and highlights the importance of analyzing glioma GWAS by sex. A better understanding of sex differences could provide biological insight into the cause of glioma with implications for prevention, risk prediction and treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available