4.8 Article

Calorimetry of a phase slip in a Josephson junction

Journal

NATURE PHYSICS
Volume 19, Issue 2, Pages 196-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41567-022-01844-0

Keywords

-

Ask authors/readers for more resources

Josephson junctions play a central role in superconducting quantum technology, and irreversibility arises from sudden slips of the quantum phase difference across the junction. By detecting the instantaneous heat release caused by a phase slip, this study provides insights into the ubiquity of dissipation in quantum devices, particularly in superconducting quantum sensors and qubits. This advancement in experimental quantum thermodynamics allows for the observation of heat in elementary quantum processes.
Josephson junctions are a central element in superconducting quantum technology; in these devices, irreversibility arises from abrupt slips of the quantum phase difference across the junction. This phase slip is often visualized as the tunnelling of a flux quantum in the transverse direction to the superconducting weak link, which produces dissipation. Here we detect the instantaneous heat release caused by a phase slip in a Josephson junction, signalled by an abrupt increase in the local electronic temperature in the weak link and subsequent relaxation back to equilibrium. Beyond the advance in experimental quantum thermodynamics of observing heat in an elementary quantum process, our approach could allow experimentally investigating the ubiquity of dissipation in quantum devices, particularly in superconducting quantum sensors and qubits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available