4.8 Article

Ultrapure green organic light-emitting diodes based on highly distorted fused π-conjugated molecular design

Journal

NATURE PHOTONICS
Volume 17, Issue 3, Pages 280-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41566-022-01106-8

Keywords

-

Ask authors/readers for more resources

Researchers have developed a new ultrapure green emitter called DBTN-2, which greatly improves the efficiency and color purity of OLED technology. The unique molecular design of this material reduces relaxation energy between excited and ground states and enhances spin-orbit couplings, resulting in highly efficient operation. These advancements make DBTN-2 a promising candidate for commercial green OLED displays.
Organic light-emitting diode (OLED) technology is promising for ultrahigh-definition displays and other applications, but further improvements in efficiency and colour purity are desired. Here, we designed and synthesized an ultrapure green emitter called DBTN-2, which is organoboron based and features a highly distorted fused pi-conjugated molecular design. This design concept substantially reduces the relaxation energy between the geometries of the excited and ground states, leading to a full-width at half-maximum emission of only 20 nm. Furthermore, the different excitation characters of the singlet and triplet states enhance the spin-orbit couplings leading to highly efficient operation. The introduction of the multiple carbazole moieties gives rise to a charge-resonance-type excitation feature of the triplet states, thus resulting in a high density of the triplet states and a rate of reverse intersystem crossing (k(RISC)) as fast as 1.7 x 10(5) s(-1). An ultrapure green OLED exploiting DBTN-2 as an emitter without optimized cavity effects and colour filters operated with Commission Internationale de l'Eclairage coordinates of (0.19, 0.74), satisfying the requirement for a commercial green OLED display. Moreover, in combination with a photoluminescence quantum yield of near 100% and a strong horizontal dipole orientation in the doped film, an excellent external quantum efficiency of 35.2% with suppressed efficiency roll-off is simultaneously obtained.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available