4.8 Article

Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene

Journal

NATURE NANOTECHNOLOGY
Volume 18, Issue 2, Pages 160-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-022-01277-z

Keywords

-

Ask authors/readers for more resources

Electrochemistry offers an efficient and sustainable solution for treating chlorinated organic compounds in polluted environmental waters. A catalyst composed of cobalt phthalocyanine molecules on multiwalled carbon nanotubes has been developed, which can selectively convert 1,2-dichloroethane into ethylene with high efficiency. The catalyst operates at a wide range of electrode potentials and reactant concentrations, achieving unprecedented near 100% Faradaic efficiency.
Electrochemistry can provide an efficient and sustainable way to treat environmental waters polluted by chlorinated organic compounds. However, the electrochemical valorization of 1,2-dichloroethane (DCA) is currently challenged by the lack of a catalyst that can selectively convert DCA in aqueous solutions into ethylene. Here we report a catalyst comprising cobalt phthalocyanine molecules assembled on multiwalled carbon nanotubes that can electrochemically decompose aqueous DCA with high current and energy efficiencies. Ethylene is produced at high rates with unprecedented similar to 100% Faradaic efficiency across wide electrode potential and reactant concentration ranges. Kinetic studies and density functional theory calculations reveal that the rate-determining step is the first C-Cl bond breaking, which does not involve protons-a key mechanistic feature that enables cobalt phthalocyanine/carbon nanotube to efficiently catalyse DCA dechlorination and suppress the hydrogen evolution reaction. The nanotubular structure of the catalyst enables us to shape it into a flow-through electrified membrane, which we have used to demonstrate >95% DCA removal from simulated water samples with environmentally relevant DCA and electrolyte concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available