4.8 Article

Transparent sunlight-activated antifogging metamaterials

Journal

NATURE NANOTECHNOLOGY
Volume 18, Issue 2, Pages 137-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-022-01267-1

Keywords

-

Ask authors/readers for more resources

Counteracting surface fogging is crucial for eyewear, windows, and displays. An innovative transparent, sunlight-activated, photothermal coating is designed to inhibit fogging. This nanoscopically thin percolating gold layer coating achieves impressive performance in fog prevention and removal, even in cloudy conditions, with improved durability and integration capabilities.
Counteracting surface fogging to maintain surface transparency is important for a variety of applications including eyewear, windows and displays. Energy-neutral, passive approaches predominantly rely on engineering the surface wettability, but suffer from non-uniformity, contaminant deposition and lack of robustness, all of which substantially degrade durability and performance. Here, guided by nucleation thermodynamics, we design a transparent, sunlight-activated, photothermal coating to inhibit fogging. The metamaterial coating contains a nanoscopically thin percolating gold layer and is most absorptive in the near-infrared range, where half of the sunlight energy resides, thus maintaining visible transparency. The photoinduced heating effect enables sustained and superior fog prevention (4-fold improvement) and removal (3-fold improvement) compared with uncoated samples, and overall impressive performance, indoors and outdoors, even under cloudy conditions. The extreme thinness (similar to 10 nm) of the coating-which can be produced by standard, readily scalable fabrication processes-enables integration beneath other coatings, rendering it durable even on highly compliant substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available