4.8 Article

Tunable interaction between excitons and hybridized magnons in a layered semiconductor

Journal

NATURE NANOTECHNOLOGY
Volume 18, Issue 1, Pages 23-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-022-01259-1

Keywords

-

Ask authors/readers for more resources

The interaction between different excitations in solids, such as excitons and magnons, has both fundamental interest and technological importance. In this study, the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr was demonstrated. By varying the direction of an applied magnetic field and applying uniaxial strain, the coupling between excitons and magnons and the associated magnon dispersion curves were modulated. These findings provide unprecedented control over opto-mechanical-magnonic coupling and are a step towards implementing hybrid quantum magnonics in a predictable and controllable manner.
The interaction between distinct excitations in solids is of both fundamental interest and technological importance. One such interaction is the coupling between an exciton, a Coulomb bound electron-hole pair, and a magnon, a collective spin excitation. The recent emergence of van der Waals magnetic semiconductors(1) provides a platform to explore these exciton-magnon interactions and their fundamental properties, such as strong correlation(2), as well as their photospintronic and quantum transduction(3) applications. Here we demonstrate the precise control of coherent exciton-magnon interactions in the layered magnetic semiconductor CrSBr. We varied the direction of an applied magnetic field relative to the crystal axes, and thus the rotational symmetry of the magnetic system(4). Thereby, we tuned not only the exciton coupling to the bright magnon, but also to an optically dark mode via magnon-magnon hybridization. We further modulated the exciton-magnon coupling and the associated magnon dispersion curves through the application of uniaxial strain. At a critical strain, a dispersionless dark magnon band emerged. Our results demonstrate an unprecedented level of control of the opto-mechanical-magnonic coupling, and a step towards the predictable and controllable implementation of hybrid quantum magnonics(5-11).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available