4.8 Article

The diverse meteorology ofJezero crater over the first 250 sols of Perseverance on Mars

Journal

NATURE GEOSCIENCE
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41561-022-01084-0

Keywords

-

Ask authors/readers for more resources

NASA's Perseverance rover's Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, revealing the spatial and temporal variability of meteorology. Measurements of temperature, aerosol concentrations, wind patterns, and relative humidity indicate diurnal variations, complex hydrologic cycles, and local topography-driven wind patterns.
NASA's Perseverance rover's Mars Environmental Dynamics Analyzer is collecting data at Jezero crater, characterizing the physical processes in the lowest layer of the Martian atmosphere. Here we present measurements from the instrument's first 250 sols of operation, revealing a spatially and temporally variable meteorology at Jezero. We find that temperature measurements at four heights capture the response of the atmospheric surface layer to multiple phenomena. We observe the transition from a stable night-time thermal inversion to a daytime, highly turbulent convective regime, with large vertical thermal gradients. Measurement of multiple daily optical depths suggests aerosol concentrations are higher in the morning than in the afternoon. Measured wind patterns are driven mainly by local topography, with a small contribution from regional winds. Daily and seasonal variability of relative humidity shows a complex hydrologic cycle. These observations suggest that changes in some local surface properties, such as surface albedo and thermal inertia, play an influential role. On a larger scale, surface pressure measurements show typical signatures of gravity waves and baroclinic eddies in a part of the seasonal cycle previously characterized as low wave activity. These observations, both combined and simultaneous, unveil the diversity of processes driving change on today's Martian surface at Jezero crater.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available