4.8 Article

Mitochondria regulate intracellular coenzyme Q transport and ferroptotic resistance via STARD7

Journal

NATURE CELL BIOLOGY
Volume -, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41556-022-01071-y

Keywords

-

Categories

Ask authors/readers for more resources

The cytosolic lipid transfer protein STARD7 is identified as a critical factor for intracellular coenzyme Q transport and suppresses ferroptosis. Dual localization of STARD7 to mitochondria and cytosol ensures the synthesis of coenzyme Q and its transport to the plasma membrane. PARL-mediated STARD7 processing is necessary for coordinating coenzyme Q synthesis and cellular distribution and could be targeted to interfere with ferroptosis.
Coenzyme Q (or ubiquinone) is a redox-active lipid that serves as universal electron carrier in the mitochondrial respiratory chain and antioxidant in the plasma membrane limiting lipid peroxidation and ferroptosis. Mechanisms allowing cellular coenzyme Q distribution after synthesis within mitochondria are not understood. Here we identify the cytosolic lipid transfer protein STARD7 as a critical factor of intracellular coenzyme Q transport and suppressor of ferroptosis. Dual localization of STARD7 to the intermembrane space of mitochondria and the cytosol upon cleavage by the rhomboid protease PARL ensures the synthesis of coenzyme Q in mitochondria and its transport to the plasma membrane. While mitochondrial STARD7 preserves coenzyme Q synthesis, oxidative phosphorylation function and cristae morphogenesis, cytosolic STARD7 is required for the transport of coenzyme Q to the plasma membrane and protects against ferroptosis. A coenzyme Q variant competes with phosphatidylcholine for binding to purified STARD7 in vitro. Overexpression of cytosolic STARD7 increases ferroptotic resistance of the cells, but limits coenzyme Q abundance in mitochondria and respiratory cell growth. Our findings thus demonstrate the need to coordinate coenzyme Q synthesis and cellular distribution by PARL-mediated STARD7 processing and identify PARL and STARD7 as promising targets to interfere with ferroptosis. Deshwal et al. show that the protease PARL regulates coenzyme Q (CoQ) via the lipid transfer protein STARD7. Mitochondrial STARD7 ensures CoQ synthesis; cytosolic STARD7 preserves CoQ transport to the membrane, protecting cells against ferroptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available