4.8 Article

Organic reaction mechanism classification using machine learning

Journal

NATURE
Volume 613, Issue 7945, Pages 689-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05639-4

Keywords

-

Ask authors/readers for more resources

In this study, a deep neural network model is used to analyze kinetic data and automate mechanistic elucidation. The model can accurately identify various classes of mechanisms, including non-steady state mechanisms, and performs well even with data containing errors or limited time points. The model is freely available and is expected to contribute to the development of fully automated organic reaction discovery and development.
A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes(1-13). Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates(14), logarithmic plots and, more recently, visual kinetic methods(15-18), in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available