4.8 Article

Magnetically mediated hole pairing in fermionic ladders of ultracold atoms

Journal

NATURE
Volume 613, Issue 7944, Pages 463-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05437-y

Keywords

-

Ask authors/readers for more resources

In this study, the experimental method of quantum gas of ultracold atoms was used to observe hole pairing phenomenon caused by magnetic correlations in a doped antiferromagnetic ladder system with mixed-dimensional couplings. The results showed that magnetic correlations can significantly increase the binding energy of holes and reduce the pair size, allowing holes to predominantly occupy the same rung of the ladder. It was also found that spatial structures in the pair distribution appeared with increased doping, indicating repulsion between bound hole pairs. By engineering a configuration to enhance binding, a strategy to increase the critical temperature for superconductivity was outlined.
Conventional superconductivity emerges from pairing of charge carriers-electrons or holes-mediated by phonons(1). In many unconventional superconductors, the pairing mechanism is conjectured to be mediated by magnetic correlations(2), as captured by models of mobile charges in doped antiferromagnets(3). However, a precise understanding of the underlying mechanism in real materials is still lacking and has been driving experimental and theoretical research for the past 40 years. Early theoretical studies predicted magnetic-mediated pairing of dopants in ladder systems(4-8), in which idealized theoretical toy models explained how pairing can emerge despite repulsive interactions(9). Here we experimentally observe this long-standing theoretical prediction, reporting hole pairing due to magnetic correlations in a quantum gas of ultracold atoms. By engineering doped antiferromagnetic ladders with mixed-dimensional couplings(10), we suppress Pauli blocking of holes at short length scales. This results in a marked increase in binding energy and decrease in pair size, enabling us to observe pairs of holes predominantly occupying the same rung of the ladder. We find a hole-hole binding energy of the order of the superexchange energy and, upon increased doping, we observe spatial structures in the pair distribution, indicating repulsion between bound hole pairs. By engineering a configuration in which binding is strongly enhanced, we delineate a strategy to increase the critical temperature for superconductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available