4.8 Article

Structural investigations into colour-tuneable fluorescent InZnP-based quantum dots from zinc carboxylate and aminophosphine precursors

Journal

NANOSCALE
Volume 15, Issue 4, Pages 1763-1774

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d2nr02803d

Keywords

-

Ask authors/readers for more resources

Fluorescent InP-based quantum dots, combined with zinc and ZnS or CdS shells, have been synthesized using zinc carboxylates and diethyldithiocarbamate precursors. The addition of zinc enhances the emissive and structural properties of the quantum dots, while reducing interfacial defects. Structural analysis reveals that the core/shell particles are homogeneous extended alloys with full-depth inclusion of zinc.
Fluorescent InP-based quantum dots have emerged as valuable nanomaterials for display technologies, biological imaging, and optoelectronic applications. The inclusion of zinc can enhance both their emissive and structural properties and reduce interfacial defects with ZnS or CdS shells. However, the sub-particle distribution of zinc and the role this element plays often remains unclear, and it has previously proved challenging to synthesise Zn-alloyed InP-based nanoparticles using aminophosphine precursors. In this report, we describe the synthesis of alloyed InZnP using zinc carboxylates, achieving colour-tuneable fluorescence from the unshelled core materials, followed by a one-pot ZnS or CdS deposition using diethyldithiocarbamate precursors. Structural analysis revealed that the core/shell particles synthesised here were more accurately described as homogeneous extended alloys with the constituent shell elements diffusing through the entire core, including full-depth inclusion of zinc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available