4.8 Article

Highly Efficient All-3D-Printed Electrolyzer toward Ultrastable Water Electrolysis

Journal

NANO LETTERS
Volume 23, Issue 2, Pages 629-636

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c04380

Keywords

digital light processing; overall water splitting; hierarchical structure; bubble behavior; porous metals

Ask authors/readers for more resources

A 3D-printed Ni electrode with a designed periodic structure and surface chemistry facilitates rapid bubble generation and emission, yielding a high electrochemically active surface area. By loading with MoNi4 and NiFe layered double hydroxide active materials, the electrode achieves high current densities for hydrogen and oxygen evolution reactions. An all-3D-printed alkaline electrolyzer exhibits stable performance for clean energy production over a long period of time.
The practical application of electrochemical water splitting has been plagued by the sluggish kinetics of bubble generation and the slow escape of bubbles which block reaction surfaces at high current densities. Here, 3D-printed Ni (3DP Ni) electrodes with a rationally designed periodic structure and surface chemistry are reported, where the macroscopic ordered pores allow fast bubble evolution and emission, while the microporosity ensures a high electrochemically active surface area (ECSA). When they are further loaded with MoNi4 and NiFe layered double hydroxide active materials, the 3D electrodes deliver 500 mA cm-2 at an overpotential of 104 mV for the hydrogen evolution reaction (HER) and 310 mV for the oxygen evolution reaction (OER), respectively. An all-3D-printed alkaline electrolyzer (including electrodes, membrane, and cell) delivers 500 mA cm-2 at a remarkable voltage of 1.63 V with no noticeable performance decay after 1000 h. Such a tailored bubble trajectory demonstrates feasible solutions for future large-scale clean energy production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available