4.7 Article

Core-collapse supernovae in the Dark Energy Survey: luminosity functions and host galaxy demographics

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 520, Issue 1, Pages 684-701

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stad056

Keywords

surveys; supernovae: general

Ask authors/readers for more resources

We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically confirmed supernovae over a redshift range 0.045 < z < 0.25. Comparing luminosity functions, the DES and ZTF samples of SNe II are brighter than that of LOSS with significances of 3.0 sigma and 2.5 sigma, respectively. We find that the host galaxies of SNe II in DES are on average bluer than in ZTF, despite having consistent stellar mass distributions.
We present the luminosity functions and host galaxy properties of the Dark Energy Survey (DES) core-collapse supernova (CCSN) sample, consisting of 69 Type II and 50 Type Ibc spectroscopically and photometrically confirmed supernovae over a redshift range 0.045 < z < 0.25. We fit the observed DES griz CCSN light curves and K-correct to produce rest-frame R-band light curves. We compare the sample with lower redshift CCSN samples from Zwicky Transient Facility (ZTF) and Lick Observatory Supernova Search (LOSS). Comparing luminosity functions, the DES and ZTF samples of SNe II are brighter than that of LOSS with significances of 3.0 sigma and 2.5 sigma, respectively. While this difference could be caused by redshift evolution in the luminosity function, simpler explanations such as differing levels of host extinction remain a possibility. We find that the host galaxies of SNe II in DES are on average bluer than in ZTF, despite having consistent stellar mass distributions. We consider a number of possibilities to explain this - including galaxy evolution with redshift, selection biases in either the DES or ZTF samples, and systematic differences due to the different photometric bands available - but find that none can easily reconcile the differences in host colour between the two samples and thus its cause remains uncertain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available