4.6 Review

Assessment of Performance of Photocatalytic Nanostructured Materials with Varied Morphology Based on Reaction Conditions

Journal

MOLECULES
Volume 27, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27227778

Keywords

photocatalyst; morphology; nanomaterials; crystal facets; environment

Funding

  1. UGC, New Delhi, India [PDFSS-2017-18-MAH-7304]

Ask authors/readers for more resources

The synthesis of nanomaterials with specific morphology is crucial for optimizing their properties and applications. Morphology plays a significant role in the efficiency of photocatalysis, as it affects surface area, crystal facets, and active sites. This study analyzes and compares different morphologies of nanomaterials for photocatalytic applications, such as nanorods, nanoflowers, nanospindles, nanosheets, nanospheres, and nanoparticles. The synthesis strategies and conditions are also evaluated to understand their impact on photocatalytic performance. The study concludes that factors like morphology and surface area are key considerations for selecting an effective photocatalyst.
Synthesis of nanomaterials with specific morphology is an essential aspect for the optimisation of its properties and applications. The application of nanomaterials is being discussed in a wide range of areas, one of which is directly relevant to the environment through photocatalysis. To produce an effective photocatalyst for environmental applications, morphology plays an important role as it affects the surface area, interfaces, crystal facets and active sites, which ultimately affects efficiency. The method of synthesis and synthesis temperature can be the basic considerations for the evaluation of a particular nanomaterial. In this study, we have considered the aspects of morphology with a basic understanding and analyzed them in terms of nanomaterial efficacy in photocatalysis. Different morphologies of specific nanomaterials such as titanium dioxide, zinc oxide, silver phosphate, cadmium sulphide and zinc titanate have been discussed to come to reasonable conclusions. Morphologies such as nanorods, nanoflower, nanospindles, nanosheets, nanospheres and nanoparticles were compared within and outside the domain of given nanomaterials. The different synthesis strategies adopted for a specific morphology have been compared with the photocatalytic performance. It has been observed that nanomaterials with similar band gaps show different performances, which can be linked with the reaction conditions and their nanomorphology as well. Materials with similar morphological structures show different photocatalytic performances. TiO2 nanorods appear to have the best features of efficient photocatalyst, while the nanoflowers show very low efficiency. For CdS, the nanoflower is the best morphology for photocatalysis. It appears that high surface area is the key apart from the morphology, which controls the efficiency. The overall understanding by analyzing all the available information has enumerated a path to select an effective photocatalyst amongst the several nanomaterials available. Such an analysis and comparison is unique and has provided a handle to select the effective morphology of nanomaterials for photocatalytic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available