4.6 Article

Glycosphingolipids (GSLs) from Sphingomonas paucimobilis Increase the Efficacy of Liposome-Based Nanovaccine against Acinetobacter baumannii-Associated Pneumonia in Immunocompetent and Immunocompromised Mice

Journal

MOLECULES
Volume 27, Issue 22, Pages -

Publisher

MDPI
DOI: 10.3390/molecules27227790

Keywords

Acinetobacter baumannii; glycosphingolipids; liposomes; immune response

Funding

  1. Deanship of Scientific Research, Qassim University [10164-cams1-2020-1-3-I]

Ask authors/readers for more resources

It is incredibly important to develop an effective vaccine formulation against drug-resistant Acinetobacter baumannii. In this study, a liposomal vaccine formulation loaded with glycosphingolipids (GSLs) and whole cell antigen (WCAgs) of A. baumannii was prepared. The results showed that this vaccine formulation stimulated a greater immune response, reduced biofilm formation, and improved survival rate in immunized mice, suggesting its potential as a prophylactic vaccine against A. baumannii infection.
Due to the high propensity of drug resistance in Acinetobacter baumannii, the number of currently available therapeutic drugs has become very limited. Thus, it becomes incredibly important to prepare an effective vaccine formulation capable of eliciting an effective immune response against A. baumannii. In this study, we prepared a liposomal vaccine formulation bearing glycosphingolipids (GSLs) from Sphingomonas paucimobilis and loaded with the whole cell antigen (WCAgs-GSLs-liposomes) of A. baumannii. The immune-stimulating potential and prophylactic efficacy of WCAgs-GSLs-liposomes were compared with those of WCAgs-liposomes (without GSLs) or free WCAgs in both immunocompetent and immunodeficient mice. The efficacy of vaccine formulations was determined by analyzing antibody titer, cytokine levels, and survival studies in the immunized mice. The findings revealed that vaccination with WCAgs-GSLs-liposomes stimulated a greater secretion of antibodies and cytokines, higher lymphocyte proliferation, and increased expression of the co-stimulatory molecules. Anti-sera from WCAgs-GSLs-liposomes-immunized mice remarkably reduced the biofilm formation by A. baumannii. Most importantly, WCAgs-GSLs-liposomes-vaccinated mice demonstrated a higher defiance against the pathogen, as compared to the immunizations with WCAgs-liposomes (without GSLs) or free WCAgs. Immunocompetent mice immunized with WCAgs-GSLs-liposomes showed a 100% survival rate, while those immunized with WCAgs-liposomes exhibited a 60% survival rate. The protective effect of WCAgs-GSLs-liposomes was also found to be higher in immunocompromised mice, as the immunized mice showed a 50% survival rate, which was greater than the 20% survival rate of those immunized with WCAgs-liposomes. The survival data was also supported by the findings of bacterial load and histological analysis that substantiated the greatest prophylactic potential of the WCAgs-GSLs-liposomes. These findings recommend that WCAgs-GSLs-liposomes may be reckoned as a prospective vaccine to protect the persons against A. baumannii infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available