4.7 Article

Structural Features Affecting the Interactions and Transportability of LAT1-Targeted Phenylalanine Drug Conjugates

Journal

MOLECULAR PHARMACEUTICS
Volume 20, Issue 1, Pages 206-218

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.molpharmaceut.2c00594

Keywords

LAT1; l-type amino acid transporter 1; IFD; induced-?t docking; QSAR; quantitative structure-activity relationship; HEK-hLAT1; human embryonic kidney cell line inducible for human l-type amino acid transporter 1

Ask authors/readers for more resources

In this study, a series of LAT1-targeted drug-phenylalanine conjugates were evaluated. Through in vitro studies and induced-fit docking, it was concluded that smaller compounds were preferred for uptake by LAT1. The flexibility of the ligand played a crucial role in determining the transportability and interactions with LAT1. Introducing polar groups enhanced interactions, while compounds with a carbamate bond in the para-position of the aromatic ring displayed efficient transport efficiencies. The findings of this study have implications for designing CNS or antineoplastic drug candidates and discovering LAT1 inhibitors for cancer therapy.
L-type amino acid transporter 1 (LAT1) transfers essential amino acids across cell membranes. Owing to its predominant expression in the blood-brain barrier and tumor cells, LAT1 has been exploited for drug delivery and targeting to the central nervous system (CNS) and various cancers. Although the interactions of amino acids and their mimicking compounds with LAT1 have been extensively investigated, the specific structural features for an optimal drug scaffold have not yet been determined. Here, we evaluated a series of LAT1-targeted drug-phenylalanine conjugates (ligands) by determining their uptake rates by in vitro studies and investigating their interaction with LAT1 via induced-fit docking. Combining the experimental and computational data, we concluded that although LAT1 can accommodate various types of structures, smaller compounds are preferred. As the ligand size increased, its flexibility became more crucial in determining the compound's transportability and interactions. Compounds with linear or planar structures exhibited reduced uptake; those with rigid lipophilic structures lacked interactions and likely utilized other transport mechanisms for cellular entry. Introducing polar groups between aromatic structures enhanced interactions. Interestingly, compounds with a carbamate bond in the aromatic ring's para-position displayed very good transport efficiencies for the larger compounds. Compared to the ester bond, the corresponding amide bond had superior hydrogen bond acceptor properties and increased interactions. A reverse amide bond was less favorable than a direct amide bond for interactions with LAT1. The present information can be applied broadly to design appropriate CNS or antineoplastic drug candidates with a prodrug strategy and to discover novel LAT1 inhibitors used either as direct or adjuvant cancer therapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available