4.5 Article

Pharmacoinformatic approach to identify potential phytochemicals against SARS-CoV-2 spike receptor-binding domain in native and variants of concern

Journal

MOLECULAR DIVERSITY
Volume 27, Issue 6, Pages 2741-2766

Publisher

SPRINGER
DOI: 10.1007/s11030-022-10580-9

Keywords

SARS-CoV-2; COVID-19; Phytochemicals; Receptor-binding domain; Virtual screening; Molecular dynamics

Ask authors/readers for more resources

This study identified four potential compounds from Indian medicinal plants that have the potential to inhibit the interaction of the spike protein with ACE2R, making them potential therapeutic agents for COVID-19. Among the four compounds, withanolide F exhibited the best binding energy and showed stringent binding to the receptor-binding domains (RBDs) of both native SARS-CoV-2 and its variants.
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) pathogenesis is initiated by the binding of SARS-CoV-2 spike (S) protein with the angiotensin-converting enzyme 2 receptor (ACE2R) on the host cell surface. The receptor-binding domain (RBD) of the S protein mediates the binding and is more prone to mutations resulting in the generation of different variants. Recently, molecules with the potential to inhibit the interaction of S protein with ACE2R have been of interest due to their therapeutic value. In this context, the present work was performed to identify potential RBD binders from the Indian medicinal plant's phytochemical database through virtual screening, molecular docking, and molecular dynamic simulation. Briefly, 1578 compounds filtered from 9596 phytochemicals were chosen for screening against the RBD of the native SARS-CoV-2 S protein. Based on the binding energy, the top 30 compounds were selected and re-docked individually against the native and five variants of concern (VOCs: alpha, beta, gamma, delta, and omicron) of SARS-CoV-2. Four phytochemicals, namely withanolide F, serotobenine, orobanchol, and gibberellin A51, were found to be potential RBD binders in native and all SARS-CoV-2 VOCs. Among the four, withanolide F exhibited lower binding energy (- 10.84 to - 8.56 kcal/mol) and better ligand efficiency (- 0.3 to - 0.25) against all forms of RBD and hence was subjected to a 100 ns MD simulation which confirmed its stringent binding to the RBDs in native and VOCs. The study prioritizes withanolide F as a prospective COVID-19 (Coronavirus disease) therapeutic agent based on the observations. It warrants deeper investigations into the four promising leads for understanding their precise therapeutic value.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available