4.7 Article

MOF-derived 3D interconnected amorphous carbon nanowire networks for robust lithium storage

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 348, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.micromeso.2022.112388

Keywords

MOF; Amorphous carbon; 3D nanowire networks; Lithium -ion batteries; Rate performance

Ask authors/readers for more resources

A 3D interconnected amorphous carbon nanowire network with developed hierarchical pores was prepared from sub-micron brick-like crystal Al-MOF through rapid heat and linker removal processes. The 3D amorphous carbon electrode exhibited superior rate performance and delivered a capacity as high as 400 mAh/g under a current density of 1.0 A/g, even after 1000 cycles, with an ultra-high capacity retention rate of 101.8%. This method represents a critical step toward realizing the full potential of MOF-derived carbon electrode materials in practical LIBs applications.
MOF-derived amorphous carbon-based materials has exhibited great potential for lithium-ion batteries (LIBs) with exceptional gravimetric capacity cycle stability. However, it is a great challenge to realize morphology control during the transformation process from MOF to carbon derivatives for obtaining electrode materials with superior rate performance and capacity retention rate under long cycle and high current density. Herein, through combining rapid heat and linker removing processes, a 3D interconnected amorphous carbon nanowire networks with developed hierarchical pores were prepared from sub-micron brick-like crystal Al-MOF. The 3D amorphous carbon with high specific surface area can provide substantial active sites for lithium storage, the interconnected nanowire networks can facilitate fast electron conduction, and the developed hierarchical pores can promote ion transport; therefore, the 3D amorphous carbon electrode exhibits superior rate performance and delivers an capacity as high as 400 mAh/g under the current density of 1.0 A/g even after 1000 cycles with an ultra-high -capacity retention rate of 101.8%, considerably outperforming other carbon derivatives derived from different types of MOF. The effective preparation method for morphology control and superior lithium storage perfor-mance represents a critical step toward capturing the full potential of MOF-derived carbon electrode materials in practical LIBs applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available