4.6 Article

Photocatalytic degradation of antiepileptic drug carbamazepine with bismuth oxychlorides (BiOCl and BiOCl/AgCl composite) in water: Efficiency evaluation and elucidation degradation pathways

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2016.04.024

Keywords

Carbamazepine; BiOCl/AgCl composite; Photocatalytic degradation; Reaction mechanism; Reactive species

Ask authors/readers for more resources

The heterogeneous photocatalytic degradation of carbamazepine (CBZ) was investigated in the presence of BiOCl/AgCl composite photocatalyst under simulated sunlight irradiation in water. BiOCl/AgCl composite showed higher photocatalytic activity than pure BiOCl for CBZ degradation. The photocatalytic mechanism analysis was based on byproducts identification by LC-MS-QT of and active species trapping or inhibiting experiments. The results revealed that the first step of the transformation mainly results in an electron transfer implying positive holes and to a lesser extent in hydroxyl radical's involvement. The enhanced photocatalytic performance of BiOCl/AgCl was proved to be related to the suitable conduction and valence band interaction that extends optical response range but also improves the efficient separation of photoinduced electron-hole pairs. BiOCl/AgCl composite totally removed CBZ from natural surface water after 30 min irradiation, suggesting its potential application to wastewater treatments. Eight intermediate products were identified demonstrating that CBZ transformation occurs through two main routes from CBZ radical cation, hydroxylation of ring (aromatic or seven membered rings), followed by further oxidation, rearrangement ring and hydroxylation. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available