4.3 Article

Microstructure Evolution and Local Hardness of Mg-Y-Zn Alloys Processed by ECAE

Journal

MATERIALS TRANSACTIONS
Volume 64, Issue 4, Pages 730-734

Publisher

JAPAN INST METALS & MATERIALS
DOI: 10.2320/matertrans.MT-MD2022018

Keywords

long-period stacking ordered (LPSO) phase; deformation kink band; local hardness; equal-channel angular extrusion (ECAE)

Ask authors/readers for more resources

Mg-9 at%Y-6 at%Zn and Mg-2 at%Y-1 at%Zn alloys were processed by equal-channel-angular extrusion (ECAE) to investigate their microstructure evolution and local hardness. The area fraction of the kink bands in the Mg-9 at%Y-6 at%Zn alloys increased with increasing the number of ECAE passes, resulting in higher hardness. In the Mg-2 at%Y-1 at%Zn alloys, the microstructural evolution of the alpha-Mg matrix phase and long-period stacking ordered (LPSO) phase by 1-pass ECAE and the increase in local hardness were discussed.
Mg-9at%Y-6 at%Zn and Mg-2at%Y-1 at%Zn alloys were processed by equal-channel-angular extrusion (ECAE) to investigate their microstructure evolution and local hardness. The area fraction of the kink bands in the Mg-9 at%Y-6at%Zn alloys increased with increasing the number of ECAE passes, resulting in higher hardness. In contrast, the number of kink boundaries in the local region near the indentation was almost constant. The relationship between the microstructure factors of the kink bands and the local hardness is discussed in comparison with the forged alloy. In the Mg-2 at%Y-1at%Zn alloys, the microstructural evolution of the alpha-Mg matrix phase and long-period stacking ordered (LPSO) phase by 1-pass ECAE and the increase in local hardness were discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available