4.7 Article

Solute synergy induced thermal stability of high-strength nanotwinned Al-Co-Zr alloys

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2022.144477

Keywords

Nanotwinned metals; Aluminum alloys; Thermal stability; Nanomechanics; Transmission electron microscopy

Ask authors/readers for more resources

This study presents a solute synergy strategy to stabilize the microstructures and improve thermal stability in high strength nanotwinned (NT) Al-Co-Zr alloys. Zr solute additions promote microstructural and mechanical stability up to 400 degrees C. In-situ microcompression tests demonstrate high strengths and deformability in these ternary NT alloys. Density functional theory calculations provide insight into the interplay between Co and Zr solute and their role in stabilizing incoherent twin boundaries. This work offers a strategy for enhancing both strength and thermal stability of nanocrystalline materials through synergistic solute pairs.
Reducing the grain size into the nanoscale regime in metallic materials provides high mechanical strengths, however at the cost of degrading thermal stability, as grain refinement induces a high driving force for grain coarsening. In this study, we present a solute synergy strategy that stabilizes the microstructures of high strength nanotwinned (NT) Al-Co-Zr alloys. Zr solute additions promote microstructural and mechanical stability up to an annealing temperature of 400 degrees C. In-situ microcompression tests demonstrate concomitant high strengths and deformability in these ternary NT alloys. Density functional theory calculations provide insight into the interplay between Co and Zr solute and how they pin and stabilize incoherent twin boundaries. This work provides a strategy for enhancing both strength and thermal stability of nanocrystalline materials when combining syner-gistic solute pairs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available