4.6 Article

Production of bovine hydroxyapatite nanoparticles as a promising biomaterial via mechanochemical and sonochemical methods

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 295, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2022.127046

Keywords

Ceramic material; Nanoparticles; Nanostructured materials; Hydroxyapatite

Ask authors/readers for more resources

This study evaluated the effectiveness of sonochemical and milling nanoparticulate techniques on bovine-origin hydroxyapatite (HA). The results showed that both methods were able to decrease the particle size and maintain the crystal structure of HA. The milling method produced smaller particles compared to sonochemical treatment.
This study aimed to evaluate the effectiveness of sonochemical and milling nanoparticulate techniques using HA of bovine origin. The starting powders were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), and transmission electron microscopy (TEM) (75 mu m). Sonication was performed with 40% of the maximum amplitude (750 W) and 20 Hz in an aqueous solution (4 h). The milling technique used a polyethylene jug loaded with 40 vol% milling elements placed in a rotatory mill (104 rpm, 48 h), then in a vibratory mill (72 h). The results revealed that the final average grain size of HA was 40 nm for the milling technique and 60 nm for the sonication (TEM). FTIR analysis showed a broad band at 1300-500 cm-1, and similar peaks without HA bond degradation, regardless of the two forms of HA nanoparticles. XRD analysis showed peaks equivalent to those of synthetic and animal HA. In addition, the equivalence between the method peaks demonstrated non-degradation of structural. The same chemical characteristics between groups were also observed in the EDX samples. We concluded that both methods were able to decrease the size of particles preserving the crystal structure, but the milling method produced smaller particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available